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The effect of conformational relaxation on the quantum dynamics of the hydrogen exchange tunneling is
studied in theD2h subspace of formic acid dimer. The fully coupled quantum dynamics in up to six dimensions
are derived for potential energy hypersurfaces interpolated directly from hybrid density functional calculations
with and without geometry relaxation. For a calculated electronic barrier height of 35.0 kJ/mol the vibrational
ground state shows a tunneling splitting of 0.0013 cm-1. The results support the vibrational assignment of
Madeja and Havenith [J. Chem. Phys. 2002, 117, 7162-7168]. Fully coupled ro-vibrational calculations
demonstrate the compatibility of experimentally observed inertia defects with in-plane hydrogen exchange
tunneling dynamics in formic acid dimer.

1. Introduction

Small hydrogen-bonded systems are ideal objects for studying
fundamental aspects of chemical reaction dynamics, in particular
those regarding the role of intramolecular vibrational energy
redistribution (IVR). This comprises phenomena such as the
hierarchy of time scales for intramolecular energy redistribution
(IVR), vibrational adiabaticity, and mode specificity of reaction
dynamics.

One specific feature that has attracted much attention is the
hydrogen or proton transfer tunneling. Small molecular systems
are quoted as models for such processes in larger biological
systems. Hydrogen exchange tunneling systems offer the
particular advantage of direct spectroscopic access to the reactive
(i.e., hydrogen exchange tunneling) process. Its interplay with
IVR and with the heavy frame conformational dynamics can
be observed directly by ro-vibrational spectroscopy through the
vibrational dependence of tunneling splittings. For the inter-
pretation of the results a detailed model of the underlying
quantum dynamics is evidently essential. This extends to the
rather practical question of which modes are essential in the
sense that they would have to be included explicitly in the active
system part of any realistic system/bath (or quantum/classical)
type model for larger biological systems.

As the simplest prototype system showing concerted inter-
molecular hydrogen exchange, formic acid dimer (FAD) has
attracted considerable interest over the years. Thus, it had been
speculated about the possible contribution of the exchange
tunneling to the enormous broadening of the infrared absorption
spectrum in the range of the OH-stretching fundamental, whose
excitation energy coincides roughly with the estimated barrier
for this process.1 This spectral feature is characteristic for
carboxylic acid dimers in general, but has recently been traced
back to essentially intramolecular anharmonic resonances within
the vibrational subspace of the monomeric carboxyl groups.2-4

The first experimental values for the tunneling splitting in the
electronic ground state of FADsin fact of any carboxylic acid
dimerswere recently derived by Madeja and Havenith from
high-resolution ro-vibrational spectroscopy.5 The results appear

to confirm theoretical predictions by Shida and Almlo¨f,6

although the assignment of the two experimental values to the
vibrational states involved, viz. the ground state and the C-O
stretching fundamental, remains ambiguous.5,7,8There have been
many theoretical attempts to predict the ground state tunneling
splitting invoking approximations of widely varying quality. The
conceptually more convincing approaches include the pure
quantum-mechanical reaction-surface model of Shida and
Almlöf6 as well as the semiclassical approaches of Tautermann
et al.7 and of Smedarchina et al.8 Given the complexity of the
system (24 vibrational degrees of freedom), the quantum
mechanical treatment of the dynamics has to rely on some form
of reduced dimensionality approximation. So far, only the
semiclassical models can afford to avoid this approximation (but
obviously have to make others instead).7,8 The quantitative
reliability, however, of semiclassical models for hydrogen
tunneling processes has become the subject of some discussion
after the direct comparison with corresponding fully quantum
mechanical calculations has recently become possible for a truly
multidimensional systemsin this case for malonaldehyde.9

Moreover, different semiclassical models apparently come to
different conclusions for the assignment of the experimental
values for the tunneling splitting in FAD. A quantum mechanical
treatment is clearly desirable, but is has to rely on reduced
dimensionality approaches as long as numerical calculations in
full dimensionality remain out of reach. Even once they become
feasible it is still important to search for approximate separability
in the system since it implies approximate symmetries and
constants of the motion, i.e., the “nontrivial” part of the
dynamics.

The subject of this contribution is a systematic study of
reduced dimensionality models for the proton exchange tun-
neling in FAD, to identify the most relevant degrees of freedom,
in particular the role of the geometry relaxation of the molecular
frame in the course of the tunneling process. As the rotational
analysis of the experimental spectra has led to some speculation
about the involvement of nonplanar structures, it will be shown
that the significant inertial defects derived from experimental
observations are perfectly consistent even with strictly in-plane
tunneling dynamics.
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2. Theoretical Methods

Given the strength of the double hydrogen bond and the
overall valence structure of FAD, the planarity is expected to
be retained during the tunneling process. This view is supported
by all ab initio quantum chemical calculations so far performed
for the tunneling path, irrespective of the level of theory.10,11

In line with these findings, the present investigation is limited
to planar geometries retaining localC2h point group symmetry.
The saddle point hasD2h point group symmetry which is
isomorphic to the molecular symmetry group G8 of FAD
undergoing concerted intermolecular hydrogen exchange.

2.1. Coordinates and Potential Energy Functions.There
is a total of nine coordinates that are totally symmetric under
C2h point group operations in FAD (i.e., that retain the local
point group symmetry). Figure 1 illustrates the choice of
coordinates for the present investigation: a combination of
Cartesian coordinates (xH, zH) for the exchanging hydrogen
atoms and valence coordinates (bond lengths, bond angles) for
the HCO2 moieties, which remain intact during the process. The
molecule is chosen to lie in the (x, z)-plane with thex-axis
defined by the line connecting the C atoms. The valence
coordinates for the HCO2-moieties are the two CO-bond lengths
r1 andr2, the OCO-bond angleâ, the CH-bond lengthrCH, and
the angleR between the CH-bond and thex-axis. The symmetric
combination of the CO-bond lengths stays virtually constant
along the reaction path so that only the antisymmetric combina-
tion ∆r ) r1 - r2 is considered here. The intermolecular
geometry parameters are the C-C-distanceR and the intermo-
lecular bending angleâR between the bisector of the OCO bond
angle and thex-axis.

The particular definition of the CH bend as the CCH bond
angle does not follow the corresponding normal coordinate
particularly well, but it has the advantage of remaining virtually

constant along the intrinsic reaction coordinate. The price to
pay is some minor mixing between the intermolecular bend and
the CH bend modes. Symmetry adaptation is obtained by
enforcing identical values for symmetry equivalent pairs of
coordinates.

To minimize the influence of inaccuracies in the representa-
tion of the underlying 24 dimensional potential function the
successively averaged spline interpolation (SASI) scheme was
employed. The procedure has been described in more detail in
ref 12. The various reduced dimensionality model potentials
are interpolated directly from a table of quantum chemical single
point calculations. The large number of such calculations
required for an accurate representation of the potential function
(∼106 in 6D) necessitates judicious optimization of the quantum
chemical part of the calculations. Figure 2 shows the potential
energy profile along the intrinsic reaction coordinate (defined
by the mass-weighted steepest descent from the saddle point)
derived on various levels of theory. The change of geometry in
terms of the coordinates defined in Figure 1 is very similar in
all cases as born out by the comparison of equilibrium and
saddle point geometries in Table 1. The best theoretical estimate
of the (purely electronic) barrier height is 2760 cm-1 or 33.0
kJ/mol (geometry optimized at the MP2 level followed by a
single point energy calculation using CCSD(T), both with the
aug-cc-pVTZ basis set).11 In terms of both barrier height and
barrier width the B3LYP hybrid density functional with the

TABLE 1: Calculated Geometries (EQ ) Equilibrium, TS ) Transition State) and Rotational Constants

B3LYP/6-31+G* B3LYP/6-31++G** MP2/6-311++G** a

EQ TS EQ TS EQ TS
exptb,c

EQ

xH/Å 0.424 0.0 0.421 0.0 0.449 0.0 0.380
zH/Å 1.189 1.118 1.189 1.115 1.178 1.101 1.151
∆r/Å 0.094 0.0 0.096 0.0 0.098 0.0 0.104
r/Å 1.271 1.267 1.266 1.261 1.270 1.264 1.269
âR/deg 4.531 0.0 4.753 0.0 5.33 0.0 4.53
â/deg 126.25 126.60 126.22 126.60 126.15 126.92 126.20
R/Å 3.855 3.569 3.826 3.552 3.843 3.532 3.827
rCH/Å 1.097 1.096 1.096 1.095 1.095 1.094 1.089
R/deg 0.68 0.0 0.50 0.0 0.20 0.0 0.67
Ac/cm-1 0.200 28 0.202 19 0.201 57 0.20154 (0.20205)d

Bc/cm-1 0.068 60 0.069 62 0.068 81 0.06976 (0.07059)d

Cc/cm-1 0.051 10 0.051 79 0.051 30 0.05182 (0.05237)d

a Core electrons frozen. MP2/TZ2P calculations (polarized valence triple-ú basis without diffuse functions27) yielded the following equilibrium
structure: xH ) 0.508 Å,zH ) 1.212 Å,∆r ) 0.095 Å,âR ) 4.05°, R ) 3.80 Å, rCH ) 1.089 Å,R ) 1.25°. b Electron diffraction data from ref
28. Rotational constants calculated from this geometry for (DCOOH)2. c Rotational constants calculated from the equilibrium geometry for (DCOOH)2.
d Experimental rotational constants determined for (DCOOH)2 from ro-vibrational spectroscopy5 are given in parentheses. Rotational constants for
(HCOOH)2 have recently been determined from time-resolved spectroscopy:29 0.020227, 0.07679, 0.05554 cm-1.

Figure 1. Definition of coordinates forC2h FAD: Cartesian axes
(x, z) (origin at the center of mass,x along CC), (xH, zH) ) Cartesian
coordinates of the bonding H atoms, (r,∆r) ) symmetric and antisym-
metric OCO stretch,â ) OCO bend,âR ) ∠CCO(1) - ∠CCO(2) )
intermolecular bend,R ) C-C distance,rCH ) CH bond length,
R ) ∠O(2)CH + ∠CCO(2) - 180° ) CCH bend.

Figure 2. Potential energy profile along the intrinsic reaction coordinate
of the concerted hydrogen exchange in formic acid dimer calculated at
different levels of theory.
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6-31+G* basis set evidently compares very favorably with much
higher level calculations. This is also evident from the com-
parison of harmonic wavenumbers and barrier heights in Table
2. At 10-20 s per point on a standard personal computer, it
recommends itself as a suitable compromise between theoretical
rigor and computational effort. It is interesting to note that the
assignment of the gerade intermolecular in-plane bendâR and
stretchνR is interchanged compared with that given in ref 4.
The assignment is obvious from the inspection of the displace-
ment vectors. It is also confirmed by the vibrational calculations
performed in the present investigation: The 4D flexible model
includingx, ∆r, âR, andR yields anharmonic wavenumbers of
212 cm-1 for νR and 167 cm-1 for âR. Thus, the intermolecular
bend lies below the intermolecular stretch. Judging from the
harmonic wavenumbers given in Table 2 this ordering should
be retained at higher levels of ab initio theory. This result sheds
some doubt on the currently accepted assignment of experi-
mental values.13

Relaxed potential surfacessminimum energy, paths, surfaces,
volumes, etc.swere calculated for fixed values of the active
coordinates by minimizing the electronic energy with respect
to all remaining degrees of freedom while conservingC2V point
group symmetry.

In all cases the grid points for which electronic calculations
were performed were chosen by starting from a set of reference
points (i.e., those already calculated) and selecting the missing
next nearest neighbors with the lowest energy estimates. Those
estimates were taken themselves as the average of next nearest
neighbors within the set of reference points. The procedure
always started from the equilibrium geometry. Table 3 lists the
grid parameters for each model. Application of the SASI scheme
for further refinement of the grids finally yielded the grid
representation of the various model potentials used further on
in the vibrational calculations. The overall convergence of the
grid representation of the model potential was checked with
respect to both extending the “ab initio” data set and increasing
the grid resolution of the SASI scheme.

2.2. Ro-Vibrational Calculations. With the help of pseudo
atoms the vibrational coordinates were defined formally in terms
of local polar coordinates (“Z-matrix coordinates”) so that the
geometry dependent terms in the kinetic energy operator could
be calculated automatically using the generalizedZ-matrix

discrete variable representation (DVR) described in ref 14. The
implementation of the Chebychev-DVR follows the original
scheme proposed by refs 15 and 16. The generalized coordinate
formalism is an extension of the approach introduced by Meyer
and Günthard.17,18Within this formalism the full ro-vibrational
Hamiltonian for a molecule withN atoms is given by the
following expression:

whereAt denotes the transpose of a matrix or vectorA. ĴR are
molecule-fixed Cartesian components of the angular momentum
operator,qk are generalized internal ()vibrational) coordinates,
and p̂k ) -ip∂/∂qk are the conjugate vibrational momentum
operators.p is Planck’s constant devided by 2π. V is the
potential energy andu is the pseudo-potential, which results
from the curvature of the rotational and vibrational coordinates,

TABLE 2: Calculated Harmonic Wavenumbers ω̃ (EQ ) Equilibrium, TS ) Transition State) and Barrier Heights ∆E

ω̃g/ω̃u

B3LYP/6-31G* B3LYP/6-311++G** MP2/6-311++G** a

parametersc EQ TS EQ TS EQ TS
exptb

(EQ)

âR
d 170/269 231/551 168/260 230/574 162/243 225/592 190/248

âR
d 210/... 492/... 200/... 508/... 189/... 524/... 137/...

âOCO 678/704 737/791 684/711 749/794 684/703 752/796 677/699
âC-O 1254/1255 1400/1400 1248/1251 1397/1400 1253/1258 1411/1428 1214/1218
âCH 1405/1397 1405/1406 1394/1391 1401/1401 1415/1406 1427/1427 1375/1362
âOH 1461/1441 1640/1538 1459/1438 1657/1558 1481/1461 1704/1601 1415/...
νCdO 1723/1786 1751/1738 1706/1773 1739/1727 1732/1789 1773/1761 1670/1754
νCH 3118/3113 3130/3128 3074/3069 3083/3082 3145/3141 3155/3154 2949/2957
νOH 3156/3247 1319i/1198 3165/3261 1253i/1257 3334/3417 1351i/1288 .../3110
τR .../78 .../90 .../76 .../86 .../56 .../58 .../68
δR 257/180 308/233 249/175 302/233 216/160 297/228 230/163
δOH 956/982 1070/1063 942/973 1070/1066 896/926 1078/1068 .../917
δCH 1069/1090 1281/1335 1070/1091 1302/1361 1074/1101 1294/1383 1050/1060
∆E 2930 2558 3091

a Core electrons frozen.b Experimental data from refs 30, 31, and 32 as cited in ref 4 (see also ref 13 and references therein).c Wavenumbers
are given in cm-1 for u/g pairs. Experimental values are fundamental transition wavenumbers. Vibrational assignment:ν ) stretch,â/δ ) in/
out-of-plane bend, t) torsion, index R for intermolecular modes.νC-O correlates with the transition state’s symmetric andνCdO with its antisymmetric
OCO-stretching mode. In plane vibrations transform as Ag or Bu, out-of-plane vibrations as Bg or Au. d The assignment of calculated gerade
in-plane intermolecular bend (âR) and stretch (νR) normal modes are switched in ref 4.

TABLE 3: DVR Grids and Basis Set Truncation
Parameters Used for Different Multidimensional Models of
the Symmetric Proton Exchange Tunneling in FAD

q qmin qmax Nq
a ∆q

x/Å -1.30 1.30 53 0.050
z/Å 0.70 1.90 13 0.100
∆r/Å -0.30 0.30 25 0.025
r/Å 1.169 1.469 13 0.025
â/deg 110.254 142.254 9 2.000
âR/deg -30.0 30.0 61 1.000
R/Å 3.00 4.60 33 0.025

coordinates Vmax/cm-1 b Nc Emax/cm-1 d Nbas
e

2D (rOH, R) 300 000 2805 40 000 2214
(x, r) 31 500 2475 38 000 1048

3D (x, âR, R) 30 000 21 629 25 000 2219
(x, z, R) 30 000 10 638 21 400 3069
(x, ∆r, R) 30 000 6592 21 400 1523

4D (x, ∆r, âR, R) 30 000 243 658 12 100 6449
5D (x, z, ∆r, âR, R) 20 000 384 069 11 000 8951
6D (x, z, ∆r, â, âR, R) 15 000 1778323 11 000 5065

a Number of grid points in 1D.b Potential energy cut-off value.
c Total number of DVR grid points included in the calculation
()primitive DVR basis size).d Energy cut-off for basis functions in
the last truncation step.e Number of basis functions in the final
diagonalization step.

Ĥ ) 1
2
(Ĵt, p̂t)(µ Z t

Z G )(Ĵp̂ ) + u(q) + V(q) (1)
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but only depends on the latter.18 As discussed in ref 14 it has
numerical advantages to rewrite the purely vibrational Hamil-
tonian in the following way:

where{A, B} ) AB + BA is the anti-commutator ofA andB,
andu′ is a slightly modified pseudo-potential (see also ref 12)

where|A| is the determinant ofA. The tensor of inertiaI , the
Coriolis couplingC and the vibrational tensorg together form
the covariant metric tensor. Their elements are given in terms
of the rotating molecule-fixed Cartesian axesebR, the atomic
coordinate vectorsxbi with respect to this basis, and the atomic
massesmi:

As proposed by Meyer and Gu¨nthard17 the contravariant
metric tensor elementsµRâ, ZkR, and Gkl are obtained by
pointwise inversion of the corresponding covariant tensor:

µ corresponds to the effective inverse tensor of inertia. The
derivatives∂xbi/∂qk can now be calculated analytically for the
geometry defined in terms of local polar coordinates as a
function of the active coordinatesqk.14,19,12

The following discussion distinguishes between flexible,
average, and frozen geometry models. All are reduced dimen-
sionality models and differ in the way how the nonactive
geometry parameters (i.e., those not included explicitly) are
treated. In the case of the flexible models the electronic energy
was minimized with respect to all inactive geometry parameters.
The corresponding variation of the inactive coordinates as a
function of the active ones was fully taken into account in the
calculation of the covariant metric tensor. The geometry
relaxation was described with a polynomial expansion in the
active coordinates with expansion coefficients derived by least-
squares fits. This representation is less flexible than the SASI
scheme, but it guarantees smooth (analytical) higher derivatives
of Cartesian coordinates. Slight wiggles in the relaxed geom-
etries (e.g., due to the finite accuracy of the energy minimiza-
tion) could otherwise produce large unphysical spikes in the
pseudo-potential. Models neglecting the pseudo-potential con-
tributions do obviously not suffer from such problems. Such
models, however, may not describe the influence of geometry
relaxation properly. An alternative approach would extend SASI

to higher than cubic splines and combine it with a smoothing
procedure. Average geometry models use the same potential as
the corresponding flexible models, but replace the inactive
geometry parameters by their average values when calculating
I , C, andg (eqs 5-7). Finally, for the frozen geometry or “rigid”
models the inactive geometry parameters are frozen at their
average values both in the calculation of the electronic energy
and in the calculation of the covariant metric tensor (eqs 5-7).

The coordinates were discretized in terms of a Chebychev-
DVR16 leading to an equidistant grid. The up to six-dimensional
vibrational Schro¨dinger equation was solved exactly by suc-
cessive diagonalization and truncation in each degree of freedom
extending the scheme proposed by Bacˇić and Light20 as
described in more detail in refs 12 and 14. The efficiency of
this method depends on the ordering of coordinates. The best
choice has the fast degrees of freedom come first and the slow
ones last. With an expected ground state tunneling splitting on
the order of 10-3 to 10-2 cm-1 overall convergence is very
critical here. It was checked carefully with respect to all
truncation parameters by systematically increasing one cutoff
limit after the other using an automated procedure. The
convergence checks obviously took several times the compu-
tational effort of the single converged calculations. Table 3 lists
the DVR grid parameters and the basis set truncation used in
the present calculations.

Ro-vibrational eigenvalues were obtained by expanding the
eigenfunctions in a direct product basis of pure vibrational
(angular momentum quantum numberJ ) 0) eigenfunctions
|V〉 of (eq 2) with eigenvaluesEV and symmetric rigid-rotor
eigenfunctions|J K〉. The Hamiltonian matrix elements are then
given by integrating (eq 1) overq:

To improve convergence the molecule-fixed coordinate
system was rotated so as to minimize ro-vibrational interactions
following the scheme proposed by Pickett,21 which can be
viewed as a generalization of the Eckart axis system22 to large
amplitude vibrations. SinceC2h symmetry is retained throughout
one hasBxz

V′V ) Byz
V′V ) úx

V′V ) úz
V′V ) 0. Given the heavy

molecular frame of FAD nonvanishing|BRâ
V′V| are very small for

V′*V (typically ∼10-3 cm-1). Therefore, it suffices to minimize
the dominant Coriolis terms which here only requires rotation
of the axis system around they-axis, i.e., thec-axis. The
corresponding rotation angleφ (not to be confused with the
Euler angles of rotation) is a function of the vibrational
coordinates. A simple linear form reduced the ro-vibrational
interactions sufficiently to achieve the convergence acceleration
necessary for the accurate numerical calculation of rotational
excitation energies:

With this choice of body-fixed axis system rotational energies
were found to converge to within 10-5 cm-1 with only a few

ĤVib )
1

4(∑
k,l

{p̂kp̂l, Gkl} + p2
∂

2Gkl

∂qk∂ql
) + u′ + V (2)

u(q1, q2,. . .) )
p2

8
∑
k,l

∂{Gkl·dl}

∂qk

+ dk‚
Gkl

4
‚dl (3)

dk ) ∂

∂qk
ln|I C

Ct g | (4)

IRâ ) ∑
i)1

N

mi(ebR X xbi)
t(ebâ X xbi) (5)

CRk) ∑
i)1

N

mi(ebRX xbi)
t
∂xbi

∂qk

(6)

gkl ) ∑
i)1

N

mi

∂xbi
t

∂qk

‚
∂xbi

∂ql

(7)

(µ Z t

Z ) ) (I C

Ct g )-1

(8)

〈J, K′|〈V′|H|V〉|J, K〉 ) δV′VEV + ∑
R

BRR
V'V〈J,K′|ĴR

2|J,K〉 +

∑
R<â

BRâ
V'V〈J, K′|{ĴR, Ĵâ}|J, K〉 + ∑

R
úR

V'V〈J, K′|ĴR|J, K〉 (9)

BRâ
V'V ) 1

2
〈V′|µRâ|V〉 (10)

úR
V′V )

1

2
∑

k

〈V′|{p̂k, ZkR}|V〉 (11)

φ/deg) 5 × 10-4(xH/Å) + 9 × 10-3(∆r/Å) + 2 ×
10-3(âR/deg) (12)
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hundred vibrational levels included. The exact energies do of
course not depend on the choice of axis system.

3. Results and Discussion

Table 4 lists the ground state tunneling splittings calculated
for the different reduced-dimensionality models investigated
here. The following discussion of how realistic such models
can be focuses on three key questions: Which are and how to
identify the degrees of freedom to include explicitly as “active
coordinates”? What is the effect of geometry relaxation in the
remaining degrees of freedom? What is the effect of zero point
energy in the corresponding vibrational modes?

3.1. Models Including Geometry Relaxation.By construc-
tion all flexible models comprise the minimum energy tunneling
path. Consequently they all feature the same barrier of 2940
cm-1. As a consequence of the partial energy minimization those
coordinates not included explicitly in the model (“inactive”
coordinates) change as a function of the active coordinates{qk}
(eqs 5-7). Neglecting this dependence in the kinetic energy
and assuming fixed average values for the inactive coordinates
in calculating Gkl and u′ (eq 2) produces relatively large
tunneling splittings. For a barrier height of more than 30 kJ/
mol the proton exchange tunneling might at first glance appear
surprisingly efficient, but inspecting the dynamical “zero point
energy” (ZPE) contributions affords an immediate explanation.
In the harmonic limit this is simply a change in the effective
barrier given by half the difference between harmonic wave-
numbers at the transition state and at the equilibrium, summed
over all inactive degrees of freedom. Zero point effects due to
the active degrees of freedom are obviously already included
exactly in the ro-vibrational calculation. The harmonic wave-
numbers given in Table 2 (B3LYP/6-31+G*) yield a zero point
correction due to inactive coordinates (∆ZPE) of-1440 cm-1

almost halving the barrier height in 1D. This is the result of the
“loss” of the gerade OH stretching mode accompanied by the
pronounced softening of the corresponding ungerade mode. The
resulting ZPE correction of about-2600 cm-1 is only partly
compensated by the increased overall rigidity of the complex
in its transition state. Closer inspection shows that the contribu-
tions of Bu (-731 cm-1), Bg (+189 cm-1), and Au(+196 cm-1)
vibrations almost cancel, justifying the restriction of the present
investigation toC2h in-plane dynamics, i.e., Ag modes. Since

the present calculations (except IRC0, see below) neglect all
ZPE corrections due to inactive coordinates, the tunneling
splitting is negligible in the 1D calculations. The ZPE corrections
may be included approximately in the IRC model by interpolat-
ing ∆ZPE linearly between the minimum and the transition state,
and adding it to the electronic potential. This model (IRC0 in
Table 4) yields a tiny tunneling splitting of 5.1× 10-5 cm-1

for the resulting effective barrier height of about 1500 cm-1.
All higher dimensional models include the hydrogen transfer
coordinate explicitly, so that the remaining∆ZPE becomes much
smaller and, in fact, almost negligible.

Taking the geometry relaxation of the inactive coordinates
explicitly into account in the kinetic energy operator (eq 2)
essentially quenches the tunneling process (“flexible” models
in Table 4). Within the numerical accuracy the lower dimen-
sional models (up to 3D) yield vanishing tunneling splittings.
The results clearly demonstrate the major effect the geometry
relaxation has through the kinetic energy. The origin is 2-fold:
(1) The effective reduced massg (eq 7) is increased by heavy
atom rearrangement. (2) The change of the frame’s geometry
induces large pseudo-potential terms (eq 3) through the third
derivative of the Cartesian geometry wrt the active coordinates.
To assess the relative importance of the two contributions I have
performed calculations for the ZPE corrected IRC0 model (see
Table 4). Figure 3 shows the pseudo-potential for the 1D flexible
model. Neglecting the pseudo-potential leads to an increase of
the tunneling splitting by 30% to 6.7× 10-5 cm-1. The path
itself is basically a consecutive motion alongR and xH.
Neglecting the relaxation of all other geometry parameters in
the calculation of the effective reduced mass, i.e.,g in (eq 7),
leads to the corresponding “average geometry model” (Table
4) with a tunneling splitting of 3.3× 10-4 cm-1. The 6-fold
increase compared with the exact flexible model results from
the decrease of the effective mass by about one-third. Thus,
the reduced mass effect clearly dominates, but the pseudo-
potential still affects the tunneling splitting very significantly.
It should also be noted that the power series expansion of the
inactive geometry parameters tends to smooth any high curvature
sections of the path, where the geometry changes abruptly. This
in turn tends to reduce the absolute value of the pseudo-potential.
Once R and xH are treated explicitly the largest curvature
contributions are removed, so that the pseudo-potential is
reduced drastically for all two- and higher-dimensional models.
With typical values of 10 cm-1 in the vicinity of the reaction
valley its influence on the tunneling dynamics becomes negli-
gible. The tunneling splitting calculated for flexible models in
2D and 3D still remains negigible (< 10-4 cm-1, see Table 4)

TABLE 4: Ground State Tunneling Splittings ∆t Calculated
for Different Multidimensional Models of FAD a

min. energy potential

∆t rigid model

coordinates ∆ZPEb flexible average ∆t ∆Eeff
c

1D IRC -1436 <10-6

IRC0
d 0 5.1× 10-5 3.3× 10-4

(rOH) -1436 <10-4

2D (rOH, R) +142 <10-4 0.1743
(x, R) <10-4 0.1318

3D (x, âR, R) 0.0222
(x, z, R) +52 <10-4 0.1062
(x, ∆r, R) 1.5162 2380

4D (x, ∆r, âR, R) +38 0.0001 0.0088 0.0003 3460
5D (x, z, ∆r,âR,R) 0.0013 2940
6D (x, z, ∆r, â, âR, R) 0.0015 2940

a All values are given in cm-1. b Harmonic ZPE correction due to
inactive coordinates not included in the calculation.c Potential energy
difference between minimum and saddle point for rigid models. For
all flexible models the potential barrier is 2930 cm-1. d ZPE included
in an approximate fashion as explained in the text, yielding an effective
barrier height of 1494 cm-1.

Figure 3. Pseudo-potential along the intrinsic reaction coordinate of
the concerted hydrogen exchange in formic acid dimer.
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due to the large reduced-mass effect, which is mainly due to
the CdO/C-O bond length relaxation and to a lesser extent to
the intermolecular bending. Once all major heavy atom relax-
ation modes are included (∆r andâR) finite tunneling splittings
persist. The 4D model couplingx, ∆r, âR, and R apparently
captures the most important contributions to the hydrogen
exchange tunneling dynamics in FAD, producing a still tiny
but definitely nonvanishing tunneling splitting of 0.0001 cm-1.
This model includes the major heavy atom motion as well as
the strong curvature in (xH, R). Remaining ZPE corrections
cancel almost completely. This cancellation should not be
considered fortuitous. Rather it is a consequence of the highly
local character of the hydrogen stretching motion, so that there
is no significant kinetic energy coupling to the molecular frame.
In addition the transformation from valence (rOH, âOH) to
Cartesian coordinates (xH, zH) removes the intrinsic OH stretch/
bend coupling in the kinetic energy.

There is another important conclusion to be drawn from the
results obtained with the flexible models. Both the effective mass
and the pseudo-potential effect are already included in the 1D
model. It suffers from the neglect of large ZPE corrections, but
these become small or even negligible for higher dimensional
models. Still there is virtually no tunneling calculated for 2D
and 3D (< 10-4 cm-1, see Table 4). The most important part
of the geometry relaxation apparently has to be contained within
the space of active coordinates treated explicitly to obtain an at
least qualitatively correct description of the dynamics. This does
not necessarily mean that the hydrogen exchange tunneling in
FAD is an inherently four- or even higher-dimensional process.
Rather it hints at significant “corner cutting” in degrees of
freedom with large effective reduced mass which induce
nonadiabatic coupling terms along the minimum energy path
(see ref 23 for an instructive example). This means that in
regions where the minimum energy path is strongly curved the
tunneling occurs preferably at the innermost side of the curve,
thus reducing curvature at the expense of higher potential
energy, with the balance reducing the action along the path.
This effect has long been recognized as quite ubiquitous in light
atom tunneling. It might still be possible that an optimally
adiabatic path minimizing the above-mentioned couplings, might
provide a realistic effectively one-dimensional description of
the tunneling process. Although an interesting proposition in
principle, it is not obvious how to construct such a path a priori
(see ref 24 for a more extensive discussion).

3.2. Rigid Models.The above conclusions were tested against
calculations for rigid models constructed from the same set of
degrees of freedom. By construction such rigid models are not
subject to the effective mass and pseudo-potential effects
discussed in the previous section. In particular the latter, which
derive from higher derivatives of the geometry, are prone to
artifacts that might result from slight numerical inaccuracies of
the optimization procedure. Furthermore, the construction of
potential energy functions is computationally much less de-
manding for rigid models than for flexible ones. This makes it
possible to extend the calculations to higher dimensions.

Apart from the hydrogen transfer coordinatexH (gerade OH
stretch) and the monomer separationR (intermolecular stretch)
significant geometrical changes along the tunneling path are
limited to the in-plane hydrogen bend (zH), the intermolecular
in-plane bendâR, and the antisymmetric OCO stretching
coordinate (∆r). The change inr is by far the largest as it reflects
the interchange of CO single and double bonds in the course of
the hydrogen exchange. The smallest rigid model therefore
includes∆r in addition to the hydrogen transfer coordinatexH

and the monomer separationR. KeepingzH, r, andâ close to
their equilibrium values andâR at zero (for the sake of
symmetry) the calculation yields an enormous tunneling splitting
of 1.52 cm-1. It is mostly the result of enforcingC2h symmetry
for the molecular frame by settingâR ) 0, which shifts the
minima to much higher potential energies. This is only partly
offset by fixing the symmetric coordinates at the equilibrium
values, so that the effective barrier height decreases by about
500 cm-1. It now becomes comparable, e.g. to that of ammonia
(NH3) and so does the tunneling splitting. Including the
intermolecular in-plane bendâR in the calculations brings the
minima back to (almost) zero, but withzH still frozen at its
equilibrium value, the effective barrier is now 500 cm-1 too
high. Still a finite tunneling splitting of 0.3× 10-3 cm-1 is
found. This is close to the value obtained with the flexible model
including the same set of active coordinates. The latter, however,
features the much lower correct barrier height by construction
underlining the importance of effective mass and pseudo-
potential effects due to the remaining geometry relaxation. Since
zH is the only remaining coordinate that changes significantly
along the tunneling path, its inclusion within a 5D model should
afford a correct representation of the in-plane tunneling dynam-
ics. The resulting tunneling splitting of 1.3× 10-3 cm-1

compares reasonably well with the lower of the two experi-
mental values for (DCOOH)2 of 2.9× 10-3 cm-1,5 in particular
considering that the true barrier height is presumably slightly
(100-200 cm-1 or half a percent) lower than for the B3LYP/
6-31+G* potential used in the present study. Part of this effect
should even be compensated by slightly smaller ZPE corrections
as anharmonicities were neglected in the above discussion.
Further inclusion of the OCO bending coordinateâ in a six-
dimensional model leads to only minor changes compared with
the results obtained in 5D.

3.3. Rotational Structure and Inertial Defects.For rigid
planar structures only two of the three moments of inertia are
independent as the so-called inertia defect

must vanish, while it takes on negative values for nonplanar
structures. For nonrigid molecules these conditions are relaxed
even in the vibrational ground state. In the simplest picture a
nonrigid molecule becomes nonplanar on average (in terms of
root-mean-square deviations from planarity) due to out-of-plane
zero-point vibrational motion. At best this can only be an
approximate argument since even triatomic molecules feature
nonvanishing∆I, even though there are evidently no out-of-
plane modes. Still semirigid planar molecules show only small
and generally negative∆I.

The analysis of the rotational structure of the IR diode laser
spectra observed by Madeja and Havenith in a seeded free
supersonic jet expansion5 led to rotational constants correspond-
ing to small but apparently significant negative inertia defects
for the totally symmetric tunneling levels (-0.38 u Å2 for the
ground state and-0.57 u Å2 for νC-O). The antisymmetric levels
by contrast, showed systematically higher values (+0.16 and
-0.02 u Å2, respectively).5 On the basis of this finding, the
authors speculated about possible out-of-plane motion of the
proton in the course of the tunneling process. Such an effect
would be very surprising as ab initio quantum chemical
calculations without exception yield a planar transition structure
for the concerted hydrogen exchange. The saddle point structure
is even more rigid with respect to out-of-plane degrees of
freedom than the equilibrium structure (see Table 1). As already
pointed out, simply invoking vibrational averaging over non-

∆I ) IC - IB - IA (13)
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planar geometries cannot provide a wholly satisfactory explana-
tion for nonvanishing∆I values of planar molecules (i.e.,
molecules with planar equilibrium structures). A more appropri-
ate explanation was already given by Oka and Morino25 using
perturbation theory to describe vibrational effects on the
rotational structure. Within the harmonic approximation the
contributions of individual modes to the inertia defect in the
vibrational ground state are additive (see also ref 26 (eq 24.4.3)).
For the B3LYP/6-31+G* potential surface, the values are given
in Table 5 adding up to an overall inertia defect of-0.0292 u
Å2 (within the harmonic approximation). This is significantly
smaller (in absolute value) than the experimental value of-0.38
u Å2 assigned to the ground state in ref 5. But as Table 5 clearly
shows single mode contributions are up to 40 times larger.
Moreover in-plane and out-of-plane contributions are compa-
rable in magnitude, the latter even being positive. (For the
strictly planar transition structure, i.e., excluding the transition
mode, the inertia defect takes a negative value of-0.30 u Å2.
The physical relevance of such a quantity may, however, be
debatable.) In view of this result the experimental values found
by Madeja and Havenith must be considered as fairly small in
magnitude and certainly compatible with an in-plane hydrogen
exchange process. Going beyond the harmonic approximation
is not expected to change the situation qualitatively. On the
contrary, highly anharmonic large amplitude motions (LAM)
are more likely to produce even larger inertia defects simply
because they deviate even more from the idealized rigid
behavior. Table 6 lists the rotational constants derived from four
and five-dimensional models including the most important LAM
degrees of freedom involved in the hydrogen exchange process.
The rotational constants were deduced directly from theJ ) 1
rotational levels obtained from fully coupled ro-vibrational
variational calculations as outlined in section 2. The results
confirm the expectation of increased contributions to the inertia
defects from LAM subspaces. They also show that these can
differ markedly for the two tunneling componentsshere by
about 0.5 u Å2 for both models. The calculated values are
obviously not expected to agree particularly well with the
experimental values although interestingly enough the difference
between the inertia defects of the two tunneling components

does have the correct sign and approximately even the correct
value. That might still be fortuitous. First of all the B3LYP/
6-31+G* equilibrium geometry deviates slightly from the
correctre structure. Second contributions are missing from all
the remaining vibrational degrees of freedom some of which
have significant Coriolis interactions with the active subspace.

4. Conclusions

The results presented in this contribution for FAD as a
prototype system clearly demonstrate the importance of a proper
dynamical description of the structural relaxation in hydrogen
exchange tunneling processes. Neglecting the dynamical effect
of geometry relaxation leads to a completely unrealistic
representation of the tunneling process overestimating even
ground state tunneling splittings by orders of magnitude. The
structural relaxation affects the tunneling dynamics mainly
through the effective mass, but the pseudo-potential still has a
substantial effect on the tunneling splitting (∼30%) in 1D
models, due to the substantial curvature of the path. Once the
H-transfer coordinate and the inter-monomer distance are
included explicitly the pseudo-potential becomes negligible,
while the effective reduced mass effect persists. As a result low-
dimensional adiabatic models of the tunneling process lead to
practically vanishing tunneling probability. Only if all the major
heavy atom motion is included explicitly realistic values are
obtained for the tunneling splitting. In FAD this includes a
minimum of four degrees of freedom leading to the conclusion
that beyond the obvious (large-curvature) corner-cutting in the
(xH, R) plane significant corner-cutting also occurs in the
antisymmetric OCO stretch and to a lesser extent in the in-
plane intermolecular bend. For FAD no major adiabatic (ZPE)
corrections occur due to accidental near perfect cancellation of
out-of-plane and ungerade in-plane contributions. Thus, the
concerted hydrogen exchange tunneling in FAD appears to be
an example of near perfect in-plane dynamics. From the analysis
of ro-vibrational coupling contributions it is also clear that this
picture is perfectly compatible with all experimental data known
so far. What remains is the question about the assignment of
the tunneling components. The experiment is necessarily

TABLE 5: Single Mode Contributions to the Inertia Defect Calculated for the Vibrational Ground State of FAD from the
B3LYP/6-31+G* Harmonic Force Field

in-plane out-of-Plane

modea ω̃g
b δ∆I

c ω̃u
b δ∆I

c modea ω̃g
b δ∆I

c ω̃u
b δ∆I

c

âR 170 0.000 269 -0.847 τR 78 +1.304
νR 210 +0.166 δR 257 +0.292 180 +0.561
âOCO 678 +0.022 704 -0.535 δOH 956 +0.094 982 +0.089
νC-O 1254 -0.000 1255 -0.275 δCH 1069 +0.087 1090 +0.087
âCH 1405 -0.093 1397 -0.133
âOH 1461 -0.129 1441 -0.323
νCdO 1723 -0.050 1786 -0.183
νCH 3118 -0.045 3113 -0.079
νOH 3156 -0.015 3247 -0.026

∑ -0.143 -2.401 ∑ +0.473 +2.041

a Mode assignment; see Table 2.b Harmonic wavenumbers in cm-1. c Single mode contributions to∆I in u Å2.

TABLE 6: Rotational Constants and Inertia Defects for the Vibrational Ground State of FAD

4Da 5Da exptb

ν̃/cm-1 0.0000 0.0003 0.0000 0.0013 0.0000 0.0029
A/cm-1 0.201763 0.201763 0.201573 0.201574 0.20205 0.202 05
B/cm-1 0.074910 0.074910 0.075024 0.075024 0.070 59 0.070 63
C/cm-1 0.055706 0.055599 0.055791 0.055707 0.05237 0.05231
∆I/u Å2 -5.97 -5.39 -6.17 -5.71 -0.38 +0.16

a Rigid models. Rotational constants for (HCOOH)2. b Experimental values derived from the rotational analysis ofνC-O of (DCOOH)2.5
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ambiguous in this respect until the rotational analysis succeeds
for a second transition from the vibrational ground state. Madeja
and Havenith assumed the tunneling splitting to increase upon
excitation of theνC-O(u) fundamental. This assignment has
recently been questioned on the basis of semiclassical model
calculations.8 While the quantitative reliability of such calcula-
tions may be uncertain, their results are also supported by a
qualitative argument put forward in ref 8: the exchange
tunneling requires the transfer of excitation from one C-O
group to another as C-O and CdO change places. This should
inhibit the tunneling process compared with the vibrational
ground state by analogy to similar situations such as the one
discussed in ref 23. While the argument is certainly valid in
principle, it relies on a local mode picture of the CO stretching
vibrations, which is very much of an idealization in the case of
FAD. The results obtained in the present study rather appear to
support the assignment of Madeja and Havenith. The ground
state tunneling splitting is calculated in 5D as 0.0013 cm-1.
This result is based on the B3LYP/6-31+G* barrier height of
2930 cm-1. This value is presumable too high by 1-2 kJ/mol
or about 5%. This would explain the factor of 2 compared with
the lower of the experimental values of 0.029 cm-1, but it is
hardly compatible with the alterative assignment giving a 10
times larger experimental value. A more clear-cut conclusion
would require calculations explicitly including the ungerade CO
stretching modes in a 7D model of the hydrogen exchange
tunneling in FAD.
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